Reg. No. : \square

Question Paper Code : 51396

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Third Semester
Electronics and Communication Engineering
EC 2204/EC 35/EC 1202 A/080290015/10144 EC 305 - SIGNALS AND SYSTEMS
(Regulation 2008/2010)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A- $(10 \times 2=20 \mathrm{marks})$

1. Sketch the following signals
(a) $x(t)=2 t$ for all t
(b) $x(n)=2 n-3$, for all n
2. Given $x[n]=\{1,-4,3,1,5,2\}$. Represent $x[n]$ in terms of weighted shifted impulse functions.
3. State the conditions for convergence of fourier series.
4. State any two properties of ROC of laplace transform $X(s)$ of a signal $x(t)$.
5. State the necessary and sufficient condition for an LTI continuous time system to be Causal.
6. Find the differential equation relating the input and output a CT system represented by $H(j \Omega)=\frac{4}{(j \Omega)^{2}+8 j \Omega+4}$.
7. What is an anti-aliasing filter?
8. State the multiplication property of DTFT.
9. Find the overall impulse response $h(n)$ when two systems $h_{1}(n)=u(n)$ and $h_{2}(n)=\delta(n)+2 \delta(n-1)$ are in series.
10. Using Z-transform, check whether the following system is stable.
$H(z)=\frac{z}{z-\frac{1}{2}}+\frac{2 z}{z-3}, \frac{1}{2}<|z|<3$.

$$
\text { PART B }-(5 \times 16=80 \mathrm{marks})
$$

11. (a) (i) Given $x(t)=\frac{1}{6}(t+2), \quad-2 \leq t \leq 4$

$$
\begin{equation*}
\text { Sketch (1) } x(t)(2) x(t+1)(3) x(2 t)(4) x(t / 2) \tag{8}
\end{equation*}
$$

(ii) Determine whether the discrete time sequence

$$
\begin{equation*}
x[n]=\sin \left(\frac{3 \pi}{7} n+\frac{\pi}{4}\right)+\cos \frac{\pi}{3} n \tag{8}
\end{equation*}
$$

is periodic or not.
Or
(b) Check the following systems are linear, stable
(i) $\quad y(t)=e^{x(t)}$
(ii) $\quad y(n)=x(n-1)$.
12. (a) Find the fourier series coefficients of the signal shown below:

Or
(b) Find the inverse laplace transform of $X(s)=\frac{1}{(s+5)(s-3)}$ for the ROCs
(i) $-5<\operatorname{Re}\{s\}<3$
(ii) $\operatorname{Re}\{s\}>3$
13. (a) Using convolution integral; determine the response of a CTLTI system $y(t)$ given input $x(t)=e^{-\alpha t} u(t)$ and impulse response $h(t)=e^{-\beta t} u(t)$, $|\alpha|<1,|\beta|<1$.

Or
(b) Find the frequency response of the system shown below :

14. (a) Using convolution property of DTFT, find the inverse DTFT of $X\left(e^{j w}\right)=\frac{1}{\left(1-\alpha e^{-j w}\right)^{2}},|\alpha|<1$.

Or
(b) Find the inverse Z-transform of $X(z)=\frac{z^{2}}{(z-0.5)(z-1)^{2}},|z|>1$.
15. (a) Find the convolution of sum of $x[n]=r[n]$ and $h[n]=u[n]$.

Or
(b) A casual LTI system is described by $y[n]-\frac{5}{6} y[n-1]+\frac{1}{6} y[n-2]=x[n]$ where $x[n]$ is the input to the system $h[n]$ is the impulse response of the system. Find
(i) . System function $H(z)$
(ii) Impulse response $h(n)$.

